
CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

1 of 19 6/14/2005 8:39 AM

CEF Programmer's Guide

This document describes how to use the current set of CEF libraries & modules. It is intended for developers

that would either like to integrate their website using CEF or would like to implement the core CEF protocol

on some other platform or language.

An overview of CEF can be found in the CEF Technical Overview document.

A business applicability discussion of CEF can be found in the CEF Scenarios document.

A description of the core CEF protocol can be found in the CEF Protocol document.

NOTE: The code snippets presented in this document are in the python programming language. But they are

fairly high level and hence the reader does not need a very intimate understanding of the python

programming language.

This document is organized as follows :-

CEF Modules - provides a brief description of the various modules within CEF

Sending a user to a remote server - describes the CEF Send portion of the CEF session transfer

Receiving a user from a remote server - describes the CEF Receive portion of the CEF session transfer

CEF Configuration - explains the various configuration options available for CEF modules

Apache API Session Mgr/Content Protector - explains the apache api module and its configuration

CEF Modules

CEF consists of the following main modules. These in turn invoke other modules as required. These modules

can be downloaded from the sourceforge website

CEFSend library - this library provides the functionality to do the actual sending of a user's session and

transferring the user's browser to the other side.

CEFReceive library - this library provides the actual functionality to receive the user session

transferred via the browser by the CEFSend cgi.

CEFSend cgi - This cgi module is a wrapper , that receives inbound CEF transfer requests from the

browser , marshalls the information needed and invokes the actual CEFSend library above. The

implementation of this CGI is considered just a sample and it can be tweaked as needed by the local

site.

CEFReceive cgi - This cgi module is a wrapper, that receive inbound CEF transfers from the portal via

the browser. It marshalls the information it receives from the web server and then invokes the core

CEFReceive library to do the actual receive processing.

CEFPortal - provides the ability to send and receive messages to and from the portal. This is used for

backend communication with the portal.

ApacheAPI session manager / content protector - this c module plugs into the Apache Web Server and

provides the ability to protect a static web site. It can receive session transfers from a CEFSend

module. It can also throw events and send messages to the portal's CEFPortal module

Sending a User to a Remote Server

Sending a user and their session from the portal to the remote server requires invoking CEFSend on the portal

(which the user would do by clicking on a link). Below is an explaination of the various steps in the process.

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

2 of 19 6/14/2005 8:39 AM

Instantiating CEFSend

Before instantiating an object of the CEFSend Python module, you have to make sure that you have the value

for at least of one the following parameters:

- target_app_id

- target_app_url

- target_cef_url

The two most common ways of using CEFSend, is to either instantiate it with the target_app_id only, or with

both target_app_url and target_cef_url.

If you supply target_app_id to CEFSend, it will figure out the target server’s address based on the

AppId2ServerIdIni file. If the application happens to be on the current server, the application’s URL will be

looked up from AppId2LocalUrlIni. This situation is useful when you want to keep track of which application

is on which server and what the local URL is for each application.

Example 1:

send = CEFSend.CEFSend(target_app_id=music_101)

Example 2:

send = CEFSend.CEFSend(

 target_cef_url=”http://server/receive.py”,

 target_app_url=”/music_101/index.html”)

Sending User-defined Arguments

There are several ways to pass user-defined arguments to the remote server:

- through the constructor

- through the add_args() method

- through the add_dict() method

Example 1:

When instantiating CEFSend, you can either pass the user-defined arguments as a dictionary, as part of the

params_dict parameter, or as key/value-based arguments:

Send = CEFSend.CEFSend(target_app_id=’music_101’,

 arg1=’value1’,

 arg2=’value3’,

 …)

or

dict = {‘arg1’: ‘val1’, ‘arg2’: ‘val2’}

send = CEFSend.CEFSend(target_app_id=’music_101’,

 params_dict=dict)

Example 2:

You can also add extra arguments by using either the add_args() method which can take a variable number

of key/value parameters or the add_dict() method which takes the key-value pairs from the given dictionary

(note that the module currently only handles values that are scalars or arrays/lists).

send.add_args(arg1=’val1’, arg2=’val2’)

or

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

3 of 19 6/14/2005 8:39 AM

send.add_dict(dict)

Other, miscellaneous operations

In case your program needs to know whether the target URL is on a remote server, you can use the

is_remote_server() method and take any special actions. This is usually necessary because if you’re

transferring to another server, you will also have to pass along some information (such as the session ID) that

the other server can use to identify the user with.

if send.is_remote_server():

 send.add_args(sid=session.get_sid())

Before completing the transfer, you can use the get_dest_url()method to log the destination URL for audit or

debugging purposes:

log_write(“transferring to “ + send.get_dest_url())

Completing the Transfer

The transfer through the browser is initiated with the transfer() method. Make sure that your program does

not emit any HTTP headers otherwise the output of this method will just display in the browser instead of

redirecting it to the target server. After calling transfer(), make sure to cease execution of the current program

without sending any output to the browser.

Example 1:

send.transfer()

return # or sys.exit(0) – stop execution

CEF Send Parameters

CEF Send module can take the following parameters when it is invoked

Attribute Name Description Required

target_app_id

Contains the application ID that the

module should redirect to. (Either this

parameter or “target_app_url” must be

supplied”)

yes

target_app_url
If supplied, it will overide the URL for the

application ID specified in

AppId2LocalUrlIni.

target_cef_url
If supplied, it will override the

“target_cef_url” specified in the target

server’s configuration file.

source_app_id

Contains the ID of the application that’s

initiating the transfer. Useful when

redirecting to the login program so that

after authentication, the user will be

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

4 of 19 6/14/2005 8:39 AM

redirected back to this application.

source_app_url

Used for the same purpose as

“source_app_id”. It overrides the URL for

the application ID specified in

AppId2LocalUrlIni

source_cef_url

Used for the same purpose as

“source_app_id”. It overrides the

“target_cef_url” specified in the target

server’s configuration file.

server_from
 If supplied, it overrides the “id”

parameter in cef.ini.

proxy
It must be set to true on the receiving web

site of the transfer

external_redirect

 By default, this flag is on and the module

always does an external redirect. If it’s set

to false, an internal redirect will be

performed but only if the target server is

the same as the originating server.

http_post

By default, this flag is off and CEFSend

does an HTTP GET. If the target URL

becomes too large because of too many

parameters, this module will automatically

switch to using HTTP POST. You can

force HTTP POST by setting this flag to

true .

send_source_cef_url

By default, this flag is off. If you turn it

on, the module will send the current

server’s source_cef_url to the target

server.

call_local_receiver

By default this flag is off. If you turn it

on, local transfers will be forced through

the cef_receive program. Normally,

during local transfers, the target

application is directly invoked. This flag

should only be used under special

circumstances.

CEF Send Methods/ APIs

These represent the methods that the CEF Send library supports. Refer to the CEF Protocol discussion for an

HTTP/XML format of the CEF APIs

transfer():

Does the transfer to the requested application through the HTTP header.

get_dest_url():

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

5 of 19 6/14/2005 8:39 AM

Retrieves the destination URL. Useful if the invoking program wants to know where the user will be

transferred to.

is_remote_server():

Returns true if the destination URL is not located under the current server & port.

add_args():

Adds the passed arguments to the destination URL

add_dict():

Adds the contents of the passed dictionary to the destination URL as key/value pairs.

get_target_cef_url(server_id):

Return the requested server’s target CEF URL by looking up its internal mappings / config files

Sample CEF Send cgi

This sample CEFSend cgi implements the steps mentioned above to provide the complete CEFSend

functionality. The complete source can be downloaded from this link at sourceforge

It reuses the functionality provided by CEFSend library above and invokes it based on the parameters that it

received. Programmers are not forced to used this CGI program for CEF. Anyone can embed the CEFSend

library module in their programs and thereby eliminate the overhead of starting another CGI program to do

the transfer.

In general, this program goes through the following steps:

1) Collect the passed parameters. Make sure target_app_id was passed.

2) Invoke the Session Manager module to make sure the user is authenticated and can access the requested

application:

import SessionMgr

session = SessionMgr.SessionMgr(target_app_id,

 args_to_login_pgm=param_dict(if any))

if not session.validate_authentication():

 return

3) Instantiate the CEFSend. module

import CEFSend

send = CEFSend.CEFSend(target_app_id=app_id,

 params_dict=args_passed_as_dict)

4) If the transfer is to a remote server and “send_sid=1” was passed, add the session ID to the argument list:

if send.is_remote_server() and args[‘sid’] == 1:

 send.add_args(sid=session.get_sid())

 send.add_args(sessionToken=session.getSessionToken()) # broker’s token

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

6 of 19 6/14/2005 8:39 AM

5) Transfer the user to the remote server:

send.transfer()

Receiving a User from a Remote Server

This section explains the steps that need to be performed on the receiver side on the remote server when a

secure transfer is received

Instantiating CEFReceive

As soon as your receiving CGI script is invoked, instantiate CEFReceive without any arguments:

receive = CEFReceive.CEFReceive()

The dict member variable holds all the passed arguments as a Python dictionary.

Retrieve the user’s session ID:

sid = receive.dict[‘sid’]

del(receive.dict[‘sid’])

Transferring to the Requested Application locally

After you have done any necessary validation on the passed parameters, instantiate CEFSend:

send = CEFSend.CEFSend(params_dict=receive.dict)

If the target application is on a remote server, let the request pass through:

if send.is_remote_server():

 send.add_args(sid=sid)

 send.transfer()

 return # or sys.exit(0) – cease program execution

Otherwise, validate the given session ID, establish a session, and transfer to the requested application:

validate the session ID & establish a local session at this

point, then transfer to the application:

send.transfer()

return # or sys.exit(0) – cease program execution

· If the “form” parameter wasn’t passed, extract all the arguments passed to the program

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

7 of 19 6/14/2005 8:39 AM

· Make the parameter dictionary available to the invoking program through the “dict” member variable.

CEF Receive Parameters

Below are the parameters that can be passed to the CEF Receive module

Parameter

Name
Description Required

form
A dictionary containing the arguments passed to the

program. (If not supplied, this module will extract

all the CGI arguments)

CEF Receive APIs

Below are the APIs that CEF Receive supports. Refer to the CEF Protocol section for the HTTP/XML

representation of these APIs

transfer():

Uses CEFSend.py to transfer the user to the requested application locally as opposed to on another server.

Sample CEF Receive cgi

This CGI program contains an example implementation for using CEF to receive a user from a remote server.

It reuses the functionality provided by CEFReceive library. Programmers are not forced to use this CGI

script. CEFReceive.py can be embedded in any program and thus provide an easy way of CEF enabling any

application.

The source for this sample can be downloaded from sourceforge

In general, this program goes through the following steps:

1) Invoke the CEFReceive.py to decode the passed parameters

receive = CEFReceive.CEFReceive()

2) Instantiate the CEFSend.py module for transfer to the local application:

send = CEFSend.CEFSEnd(params_dict=receive.dict, proxy=1)

3) If the target application is on a remote server or the login program is being invoked, do the transfer and

exit:

if send.is_remote_server() or target_app_id == ‘login’:

 send.transfer()

 return

4) The requested application is on this server, create a session for the user:

import SessionMgr # replace this with your own session manager

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

8 of 19 6/14/2005 8:39 AM

*** import your session manager & profile manager over here ***

sid = receive.dict[‘sid’]

sessionToken = receive.dict[‘sessionToken’]

SessionMgr.write_session_file(sid, profile)

SessionMgr.create_session_cookie(sid)

you can also add profile retrieval functions here

5) Local Transfer to the application:

send.transfer()

CEF Configuration

In order for CEF to work between the portal and the remote web site, some configuration work needs to be

done. This configuration needs to happen both on the portal and the remote website

Below are the details of some of the configuration files and the configuration steps that may need to

performed

cef.ini – the main configuration file for both CEF & the Secure Portal

AppId2ServerId.ini – Maps application IDs to servers (used on the sending server)

AppId2LocalUrl.ini – Maps applications IDs to URLs on the local server (used on the receiving server)

Servers/server_id_files – A set of files which contain the configuration for remote servers. The

“server_id” is taken from the AppId2ServerId.ini file based on the given application ID.

cef.ini

This is the main configuration file for the Secure Portal and CEF.

It contains the following groups of configuration parameters:

 main - the main configuration for CEF

 cck - this group contains information used to hold the backchannel conversation with the

portal

 login - for the Secure Portal login programs. contains login url and related information about

the central portal

 session - timeout, format and other params applicable for the session manager & the Apache

API plug-in

 url_defaults - default URLs in case only partial ones are provided to the CEF libraries

Group: main

Parameter Name Description

Id

The current server’s unique ID. This ID is passed

along as the “server_from” or “proxy_n” parameter

when the current server transfers a user to another

server.

AppId2ServerIdIni
Points to the AppId2ServerId.ini file. If it doesn’t

contain an absolute path name, the given file will be

looked up from the Portal’s data directory

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

9 of 19 6/14/2005 8:39 AM

(Portal/data)

AppId2LocalUrlIni

Points to the AppId2LocalUrl.ini file. If it doesn’t

contain an absolute path name, the given file will be

looked up from the Portal’s data directory

(Portal/data)

ServerDir

Points to the directory that contains the “server_id”

files for remote servers. The “server_id” is looked up

from AppId2ServerId.ini based on the given

application ID

source_cef_url

Points to the current server’s CEF receiving program

(cef_receive.py). If this parameter is not set, the

current server is used with the default CEF receive

script’s location

central_cef_url

Points to the CEF receiving program on the Secure

Portal. If this parameter is set, all transfers from one

remote server to another and vice versa will go

through the Secure Portal. This should be the default

mode of operation

Group: cck

This group provides the url and other details where CEF should hold a back channel communication. Hence

it is only relevant on the remote servers

Parameter

Name
Description

url
Points to the backchannel conversation URL.

(Make sure this server/url is running and can

accept http connections)

Group: login

This group defines the login url and related information for the secure portal. This group is only used &

relevant on the Secure Portal and ignored on all other remote servers

Parameter

Name
Description

login_url
The fully qualified URL for the user

id/password-based login program.

cert_login_url
The fully qualified URL for the

certificate-based login program.

login_tpl

Points to the login HTML template. If it

doesn’t contain an absolute path name, the

given file will be looked up from the Portal’s

data directory (Portal/data)

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

10 of 19 6/14/2005 8:39 AM

login_wml
WML version of “login_tpl” for WAP

(Wireless Application Protocol)

account_sel_url
The fully qualified url that can be used for

user account selection afther the user has

logged in

account_sel_tpl

Point to the account selection HTML

template. If it doesn’t contain an absolute

path name, the given file will be looked up

from the Portal’s data directory (Portal/data)

account_sel_wml
WML version of “account_sel_tpl” for WAP

(Wireless Application Protocol)

main_tpl

This is an optional parameter that may point

to an HTML template that enforces the site’s

standards (such as banners, footers, etc). If

it’s set, the contents of “login_tpl” and

“account_sel_tpl” will be merged into it as

the “content” parameter using

expandHTML.py

Group: session

This group is used on all servers for creating and managing local sessions. It’s used by both the Python

session manager and the Apache API plug-in.

Parameter

Name
Description

timeout_secs
Indicates the number of seconds that it takes for

an idle session to time out.

cookie_prefix
Prefix of the session cookie that gets embedded

in the browser. The port number of the current

server is appended to this name.

dir

Points to the directory that contains the session

files. If it doesn’t contain an absolute path name,

the given directory is assumed to be under the

Portal’s data directory (Portal/data)

remove_secs
Idle sessions are removed after this many

seconds.

Group: url_defaults

In case only partial URLs are provided to the CEF modules (for example only a server URL without a path),

these parameters will be used to complete the given URL.

Parameter Name Description

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

11 of 19 6/14/2005 8:39 AM

root

If set, it contains the name of the root

directory for CEF in the browser’s

destination URL. For example, if this

parameter is set to “pysol” and the

browser’s URL contains

“/~user/pysol/Portal”, the URL root to the

Portal directory will become

“/~user/pysol” and it will be prepended to

all the script URLs below. This is how the

same configuration file can be used for all

users without any change on the

development server.

login_script
Points to the default login CGI script

(/Portal/cgi-bin/login.py)

cert_login_script
Points to the default certificate login CGI

script (/Portal/cgi-bin/cert_login.py)

cert_receive_script
Points to the default CEF receiving CGI

script (/Portal/cgi-bin/cef_receive.py)

account_sel_script
Points to the default account selection CGI

script (/Portal/cgi-bin/account_sel.py)

AppId2LocalUrl.ini

This file maps application IDs (target_app_id) to URLs (target_app_url) on the local server. It’s used by

CEFSend.py to find out the location for a given application ID.

Location: derived from cef.ini based on the AppId2LocalUrlIni parameter (usually

Portal/data/AppId2LocalUrl.ini)

Used by: CEFSend.py

Format: A key/value pair of application IDs (target_app_id) and local URLs (target_app_url).

Example:

music_101 = /music/music_101.html

math_301 = /match/cgi-bin/math.html

login = /cgi-bin/login.cgi

menu = /menu/cgi-bin/menu.cgi

AppId2ServerId.ini

This file maps application IDs (target_app_id) to server IDs. It’s used by CEFSend.py to figure out what

server a given application is located on.

Location: derived from cef.ini based on the AppId2ServerIdIni parameter (usually

Portal/data/AppId2ServerId.ini)

Used by: CEFSend.py

Format: A key/value pair of application IDs and server IDs. Note that the

configuration file for the server ID is looked up from

“ServerDir” (specified in cef.ini)

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

12 of 19 6/14/2005 8:39 AM

Example:

music_101 = http_www.pybiz.com

math_301 = https_www.pybiz.com

login = https_www.pybiz.com

menu = https_www.pybiz.com

The server ID naming convention is to use the server’s actual URL without any forward slashes and the

colons “:” converted to underscores “_”.

Server ID Files

These files contain the necessary information about remote servers that CEFSend.py can use to transfer users

there. For each server ID defined in AppId2ServerId.ini, you must have a server ID file. If there’s no

configuration file for a server ID, the program will try to guess the value of target_cef_url based on some

defaults and the server ID itself.

Location: Directory is derived from cef.ini based on the ServerDir parameter.

The file name is derived form AppId2ServerIdIni file based on the given application ID.

Used by: CEFSend.py

Configuration Parameters:

Parameter

Name
Description

target_cef_url

The url of the receiving CEF program on the

remote server

 Example:

https://www.pybiz.com:4444/cef_receive.cgi

Apache API Session Mgr/ Content Protector module

The Apache API Session Mgr/Content Protector module is a C module that can be loaded into an Apache

Web Server. This module provides static web sites the ability to participate in CEF Session Transfers and

also do basic session management. It also can be used to throw events of interest back to the central portal.

Thus it can be thought of the apache api version of the CEF Send/Receive, the CEF Portal and the session

manager.

Apache Api Configuration Parameters

This section describes each parameter that is included in the Apache Server’s configuration file to customize

the behavior of this Apache API.module

Parameter Name Description Required

key_file
Points to the file that contains this server’s private

SSL key for communicating with the central portal.

e.g. /usr/local/ssl/private/portal.key

cert_file
Points to the file that contains this server’s SSL

certificate for communicating with the portal.(if the

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

13 of 19 6/14/2005 8:39 AM

key_file is set, this must be set too) e.g

/usr/local/ssl/certs/portal.cert

auth_broker_url

The fully qualified URL to post authorization

messages back to the portal. The URL scheme can be

either http or https (for SSL communication) e.g

http://www.pybiz.com:345/cgi-bin/auth.cgi

cred_broker_url

The fully qualified URL on the portal to post credit

check kinds of messages. The URL scheme can be

either http or https (for SSL communication)

https://www.pybiz.com/credit/cgi-bin/credit_check.py

bill_broker_url

The fully qualified URL on the portal to post billing

messages. The URL scheme can be either http or

https (for SSL communication)

https://www.pybiz.com:3000/cgi-bin/billing.cgi

public_url_start

A list of URL prefixes. Any access to a URL that

begins with any of these prefixes will not be

protected. For further info, see the end of this section.

(this parameter cannot be used with

protected_url_start) /free_contents/ /index.html

public_url_end

A list of URL endings (extensions). Any access to a

URL that ends with any of these endings will not be

protected. For further info, see the end of this

section.(this parameter cannot be used with

protected_url_end) e.g. .gif .jpg

protected_url_start

A list of URL prefixes. Any access to a URL that

begins with any of these prefixes will be protected.

For further info, see the end of this section. (this

parameter cannot be used with public_url_start)e.g.

/order_status /services

protected_url_end

A list of URL endings (extensions). Any access to a

URL that ends with any of these endings will be

protected. For further info, see the end of this

section.(this parameter cannot be used with

public_url_end) .doc .ppt .xls

bill_url

A list of URL prefixes. Any access to a URL that

begins with any of these prefixes will trigger a billing

event to the portal regardless of the user’s session file

settings. e.g. /billing_docs/ /films/billable/

portal_data_dir

Points to a data/config directory. The following

parameters will be read in from cef.ini in this

directory: the session directory, the cookie prefix, and

the session timeout seconds. e.g /usr/pysol/Portal/data

no_session_url
A URL that users will be redirected to in case they

don’t have a session or the session has expired

http://www.pybiz.com/no_session.html

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

14 of 19 6/14/2005 8:39 AM

bill_fail_url
A URL that users will be redirected to in case the

billing failed for the URL they tried to access

http://www.pybiz.com/bill_fail.html

auth_fail_url
A URL that users will be redirected to in case the

authorization failed for the URL they tried to access

http://www.pybiz.com/auth_fail.html

In the Apache configuration file, you’ll have to specify our dynamically loadable module first with the

LoadModule directive before specifying any of the configuration parameters. Each configuration parameter

name must be preceded by the Security directive. Here’s an example:

LoadModule security_module libexec/mod_security.so

Security key_file /usr/local/ssl/private/portal.key

Security cert_file /usr/local/ssl/certs/portal.cert

Security auth_broker_url http://www.pybiz.com:345/cgi-bin/auth.cgi

Security cred_broker_url https://www.pybiz.com/credit/cgi-bin/credit_check.py

Security bill_broker_url https://www.pybiz.com:3000/cgi-bin/billing.cgi

Security public_url_start /free_contents/ /index.html

Security public_url_start /misc/

Security public_url_end .gif .jpg .txt

Security bill_url /films/billable /cgi-bin

Security portal_data_dir /usr/pysol/Portal/data

Security skip_broker_url http://www.pybiz.com/Portal/cgi-bin/auth_fail.py

Security no_session_url http://www.pybiz.com/nosession.html

Security bill_fail_url http://www.pybiz.com/bill_fail.html

Security auth_fail_url http://www.pybiz.com/auth_fail.html

Notes on some of the configuration parameters:

A note on the public_url_start, public_url_end, private_url_start, and private_url_end parameters. If

none of these parameters are specified, it means that the Apache plug-in will protect the entire server.

If you don’t want anything to be protected, don’t load the plug-in into the server.

If you specify only the public parameters, everything will be protected except what is specified in these

parameters. If you specify only the private parameters, nothing will be protected except what is

specified in these parameters.

If the public and private parameters are used together, the public parameters take precedence over the

two private parameters. Any URLs specified in public_url_start or public_url_end will not be

protected. If a request comes into a URL whose prefix is specified in “protected_url_start” and whose

postfix is specified in public_url_end, the public parameter will take precedence and the user will be

allowed to view the content. To see how the plug-in processes these parameters, see step #2 in the

Steps Inside the Apache API section.

The URL for the no_session_url, bill_fail_url, & auth_fail_url parameters is only pulled from the

Server’s config file currently. These URLs could also be obtained from the session file or from a

cookie in the browser once the exact parameter name (in the session file or the cookie) is known. In

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

15 of 19 6/14/2005 8:39 AM

general, any of the server configuration parameters could be obtained either from the cookie or the

session file as long as their alternate location is exactly specified.

Relevant Session File Contents

This section describes each parameter that is obtained from the users’ session files The session file is

essentially assumed to a file on disk for each user. It contains session information about the user obtained

during a session transfer alongwith any pre-configured information from the portal. The format of the file is

in XML. Below is the required information in the session file. Other than this, the session file can contain any

other information that is relevant to the application,. CEF does not mandate anything else to be stored or in

any format within the session file.

Parameter

Name
Description

last_access_time

Date & time the session was last accessed.

The Apache API determines whether the

session has expired based on this parameter &

the timeout value that’s specified in cef.ini.

This value is updated on each server access.

auth_url

A list of URL prefixes that the user is allowed

to access without

invoking the portal for an authorization check.

If the user tries to access a URL that’s not

specified here, the portal will be contacted for

authorization.

bill_url
A list of URL prefixes whose access will

trigger a credit check and a billing event to

the portal.

notify_broker

This is a flag indicating whether the server

should notify the portal about all events that

take place on the user’s behalf (including

non-billable events)

Steps Inside the API

The following steps are performed by the module for each request that the server gets:

Retrieve the URL for the current request1.

Check whether the current URL should be protected. The following conditions are tested in the order

given and if any of them evaluates to true, the request is allowed to pass through without any

interference

2.

If public_url_start was specified and the current URL begins with any of the prefixes in it.1.

If protected_url_start was specified but none of the prefixes in it match the beginning of the

current URL.

2.

If public_url_end was specified and the current URL ends with any of the values in it.3.

If protected_url_end was specified but none of the values in it match the ending of the current

URL.

4.

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

16 of 19 6/14/2005 8:39 AM

If all conditions above evaluated to false, the current URL is considered to be protected.5.

Retrieve the user’s session ID from the browser’s cookie based on the sid_cookie_prefix from cef.ini

(the current server’s port number is appended to this parameter’s value)

3.

If the session ID cookie is not found, the user will be redirected to the URL that’s specified in

no_session_url.

4.

Read in the session file & make sure the session is still valid5.

If the session has timed out, redirect the user to the URL that’s specified in no_session_url.6.

Update the last_access_time in the session.7.

Check if the current URL begins with any of the prefixes that are specified in auth_url in the user’s

session file. If a match is not found, the portal will be contacted for authorization. If the portal turns

down the request or a communication failure occurs, the user will be redirected to the URL that’s

specified in auth_fail_url. (if the authorization url is not configured, redirect to the URL specified in

skip_broker_url)

8.

Check if the current URL begins with any of the URLs that are specified in the server’s or the session

file’s bill_url. If a match is found, the portal will be contacted to check the credit & to bill the user. If

the portal turns down the request or a communication failure occurs, the user will be redirected to the

URL that’s specified in bill_fail_url.(if either the credit or billing portal is not configured, redirect to

the URL specified in skip_broker_url)

9.

All checks have been done, the user can now access the page.10.

Miscellaneous Notes

It’s assumed that the user’s session file is in the format that the Python session manager (SessionMgr.py)

keeps it – in XML with the first 16 bytes in the file reserved for the last access time.

Request Examples

This section gives an example of the XML structure for each request type. Of course this request type will

change depending on the type of application using it and their needs. In this case the samples are shown in

the biztalk format, with a header envelope containing a body. The header contains routing information like

the server from which the message was sent and the server to which the message is going,. This allows for

automated dispatch and processing of messages on the sender and receiver side.

Authorization Request

<?xml version="1.0"?>

 <biztalk xmlns="urn:schemas-biztalk-org:biztalk-0.81.xml">

 <body>

 <interaction xmlns="urn:schemas_authorize.xml">

 <context xmlns="urn:schemas_authorize.xml">

 <version>00-00-01</version>

 <timestamp>947191793</timestamp>

 <timeout>45</timeout>

 <route>

 <from>

 <session>98dced86af2a93b7c393d59aaf</session>

 <user>CN=chetan_patel</user>

 <process>remote_server_A</process>

 <family>remote server A</family>

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

17 of 19 6/14/2005 8:39 AM

 </from>

 <to>

 <path>http://www.pybiz.com/portal/authorize/cgi-bin/authorize.py</path>

 <process>portal1</process>

 <family>cef portal</family>

 </to>

 </route>

 <request_type>authorize</request_type>

 </context>

 <body>

 <authorize xmlns="urn:schemas-portal/portal-0.50/authorize.xml">

 <billing_model>Flat</billing_model>

 <date>29.06.1999</date>

 <price>100</price>

 <name>rock music</name>

 <currency>USD</currency>

 <description>rock music flat billing service</description>

 <album>Born in the USA</album>

 <artist>Bruce Springsteen</artist>

 <provider>pybiz</provider>

 <id>2876Afc4deh</id>

 <music_url>http://www.pybiz.com/music/coolalbum.rm</music_url>

 </authorize>

 </body>

 </interaction>

 </body>

</biztalk>

Credit-check Request

<?xml version="1.0"?>

 <biztalk xmlns="urn:schemas-biztalk-org:biztalk-0.81.xml">

 <body>

 <interaction xmlns="urn:schemas_credit_check.xml">

 <context xmlns="urn:schemas_credit_check.xml">

 <version>00-00-01</version>

 <timestamp>947191793</timestamp>

 <timeout>45</timeout>

 <route>

 <from>

 <session>98dced86af2a93b7c393d59aaf</session>

 <user>CN=chetan_patel</user>

 <process>remote_server_A</process>

 <family>remote server A</family>

 </from>

 <to>

 <path>http://www.pybiz.com/portal/creditcheck/cgi-bin/creditcheck.py</path>

 <process>portal1</process>

 <family>cef portal</family>

 </to>

 </route>

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

18 of 19 6/14/2005 8:39 AM

 <request_type>credit_check</request_type>

 </context>

 <body>

 <credit_check xmlns="urn:schemas-portal/portal-0.50/credit_check.xml">

 <id>947191716.809</id>

 <payment>

 <units>5</units>

 <currency>USD</currency>

 </payment>

 <date>06.12.2000</date>

 <service_id>123</service_id>

 </credit_check>

 </body>

 </interaction>

 </body>

</biztalk>

Usage Request

<?xml version="1.0"?>

<biztalk xmlns="urn:schemas-biztalk-org:biztalk-0.81.xml">

 <body>

 <interaction xmlns="urn:schemas-usage-event.xml">

 <context xmlns="urn:schemas-usage-event-context.xml">

 <version>00-00-01</version>

 <timestamp>947191793</timestamp>

 <timeout>45</timeout>

 <route>

 <from>

 <session>98dced86af2a93b7c393d59aaf</session>

 <user>CN=chetan_patel</user>

 <process>remote_server_A</process>

 <family>remote server A</family>

 </from>

 <to>

 <path>http://www.pybiz.com/portal/billing/cgi-bin/BillingProxy.py</path>

 <process>portal1</process>

 <family>cef portal</family>

 </to>

 </route>

 <request_type>usage_event</request_type>

 </context>

 <body>

 <usage_event xmlns="urn:schemas-portal/portal-0.50/usage_event.xml">

 <id>947191716.809</id>

 <item_id>http://pybiz.com/billing/cgi-bin/billing.cgi</item_id>

 <units_consumed>45</units_consumed>

 </usage_event>

 </body>

 </interaction>

CEF Programmer's Guide file:///C:/temp/amazon/cef_programmers_guide.html

19 of 19 6/14/2005 8:39 AM

 </body>

</biztalk>

